4,373 research outputs found

    Mechanical behavior of a continuous fiber reinforced aluminum matrix composite subjected to transverse and thermal loading

    Get PDF
    The transverse properties of an aluminum alloy metal matrix composite reinforced by continuous alumina fibers were investigated. The composite is subjected to both mechanical and cyclic thermal loading. The results of an experimental program indicate that the shakedown concept of structural mechanics provides a means of describing the material behavior. When the loading conditions are within the shakedown region, the material finally responds in an elastic manner after initial plastic response, and for loading conditions outside the shakedown region, the material exhibits a rapid incremental plastic strain accumulation. The failure strain varies by an order of magnitude according to the operating conditions. Hence, for high mechanical and low thermal loading, the failure strains is small; for low mechanical and high thermal loading, the failure strain is large

    Reduction of thermal stresses in continuous fiber reinforced metal matrix composites with interface layers

    Get PDF
    The potential of using an interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix was investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly

    The Incidence and Clinical Relevance of Graft Hypertrophy After Matrix-Based Autologous Chondrocyte Implantation

    Get PDF
    Background: Graft hypertrophy is the most common complication of periosteal autologous chondrocyte implantation (p-ACI). Purpose: The aim of this prospective study was to analyze the development, the incidence rate, and the persistence of graft hypertrophy after matrix-based autologous chondrocyte implantation (mb-ACI) in the knee joint within a 2-year postoperative course. Study Design: Case series; Level of evidence, 4. Methods: Between 2004 and 2007, a total of 41 patients with 44 isolated cartilage defects of the knee were treated with the mb-ACI technique. The mean age of the patients was 35.8 years (standard deviation [SD], 11.3 years), and the mean body mass index was 25.9 (SD, 4.2; range, 19-35.3). The cartilage defects were arthroscopically classified as Outerbridge grades III and IV. The mean area of the cartilage defect measured 6.14 cm2 (SD, 2.3 cm2). Postoperative clinical and magnetic resonance imaging (MRI) examinations were conducted at 3, 6, 12, and 24 months to analyze the incidence and course of the graft. Results: Graft hypertrophy developed in 25% of the patients treated with mb-ACI within a postoperative course of 1 year; 16% of the patients developed hypertrophy grade 2, and 9% developed hypertrophy grade 1. Graft hypertrophy occurred primarily in the first 12 months and regressed in most cases within 2 years. The International Knee Documentation Committee (IKDC) and visual analog scale (VAS) scores improved during the postoperative follow-up time of 2 years. There was no difference between the clinical results regarding the IKDC and VAS pain scores and the presence of graft hypertrophy. Conclusion: The mb-ACI technique does not lead to graft hypertrophy requiring treatment as opposed to classic p-ACI. The frequency of occurrence of graft hypertrophy after p-ACI and mb-ACI is comparable. Graft hypertrophy can be considered as a temporary excessive growth of regenerative cartilage tissue rather than a true graft hypertrophy. It is therefore usually not a persistent or systematic complication in the treatment of circumscribed cartilage defects with mb-ACI

    Reconstructing phylogenetic level-1 networks from nondense binet and trinet sets

    Get PDF
    Binets and trinets are phylogenetic networks with two and three leaves, respectively. Here we consider the problem of deciding if there exists a binary level-1 phylogenetic network displaying a given set T of binary binets or trinets over a taxon set X, and constructing such a network whenever it exists. We show that this is NP-hard for trinets but polynomial-time solvable for binets. Moreover, we show that the problem is still polynomial-time solvable for inputs consisting of binets and trinets as long as the cycles in the trinets have size three. Finally, we present an O(3^{|X|} poly(|X|)) time algorithm for general sets of binets and trinets. The latter two algorithms generalise to instances containing level-1 networks with arbitrarily many leaves, and thus provide some of the first supernetwork algorithms for computing networks from a set of rooted 1 phylogenetic networks
    • …
    corecore